0.5 Narcissistic Number

Score: 20pts

Time Limit: 2.00 sec

An n-digit number that is the sum of the \(n^{th}\) powers of its digits is called an n-narcissistic number.

\(6 = 6^{1}\)

\(371 =3^{3} + 7^{3} + 1^{3}\)

\(1634 = 1^{4} + 6^{4} + 3^{4} + 4^{4}\)

\(6 = 6^{1}\)

\(371 =3^{3} + 7^{3} + 1^{3}\)

\(1634 = 1^{4} + 6^{4} + 3^{4} + 4^{4}\)

Constraints

\(1 \leq n \leq 6\)

Input Format

Input will contain the number of digits

Output Format

Print all the n-digit Narcissistic numbers separated by spaces in a single line

Example 1

Input:

1

Output:

0 1 2 3 4 5 6 7 8 9

Explanation:

All one digit numbers are narcissistic numbers

\(1 = 1^{1}\)

\(2 = 2^{1}\)

\(3 = 3^{1}\)

......

1

Output:

0 1 2 3 4 5 6 7 8 9

Explanation:

All one digit numbers are narcissistic numbers

\(1 = 1^{1}\)

\(2 = 2^{1}\)

\(3 = 3^{1}\)

......

Example 2

Input:

6

Output:

548834

Explanation:

There is only one 6-digit number which satisfies the required condition

\(548834 = 5^{6} + 4^{6} + 8^{6} + 8^{6} + 3^{6} + 4^{6}\)

6

Output:

548834

Explanation:

There is only one 6-digit number which satisfies the required condition

\(548834 = 5^{6} + 4^{6} + 8^{6} + 8^{6} + 3^{6} + 4^{6}\)